Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1378622.v1

ABSTRACT

Background: Multi-Agent Simulation is an essential technique for exploring complex systems. In researches of contagious diseases, it is widely exploited to analyze their spread mechanisms, especially for preventing COVID-19. Nowadays, transmission dynamics and interventions of COVID-19 have been elaborately established by this method, but its computation performance is seldomly concerned. As it usually suffers from inadequate CPU utilization and pour data locality, optimizing the performance is challenging. Results: This paper explores approaches to optimize multi-agent simulation for COVID-19 disease. The focus of this work is on the algorithm and data structure designs for improving performance, as well as its parallelisation strategies. We propose two successive methods to optimize the computation. We construct a case-focused iteration algorithm to improve data locality, and create a thread-safe data-mapping paradigm called hierachical hash table to accelerate hash operations. Conclusions: Our performance results demonstrate capabilities of these methods exhibiting significant improvements of system performance. The case-focused method degrades $\sim 90 \%$ cache references and achieves $\times 4.3$ speedup. Hierachical hash table can further boost computation speed by 47\%. And parallel implementation with 20 threads on CPU achieves $\times 81$ speedup consequently.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL